http://blog.chinaunix.net/uid-
Hough變換是圖像處理中從圖像中識別幾何形狀的基本方法之一
http://blog.chinaunix.net/uid-
Hough變換是圖像處理中從圖像中識別幾何形狀的基本方法之一
http://grunt1223.iteye.com/blog/961063
給定兩個點p1與p2的坐標,確定這兩點所構成的直線,要求對於輸入的任意點p3,都可以判斷它是否在該直線上。初中解析幾何知識告訴我們,判斷一個點在直線上,只需其與直線上任意兩點點斜率都相同即可。實際操作當中,往往會先根據已知的兩點算出直線的表達式(點斜式、截距式等等),然後通過向量計算即可方便地判斷p3是否在該直線上。
生產實踐中的數據往往會有一定的偏差。例如我們知道兩個變量X與Y之間呈線性關系,Y=aX+b,我們想確定參數a與b的具體值。通過實驗,可以得到一組X與Y的測試值。雖然理論上兩個未知數的方程只需要兩組值即可確認,但由於系統誤差的原因,任意取兩點算出的a與b的值都不盡相同。我們希望的是,最後計算得出的理論模型與測試值的誤差最小。大學的高等數學課程中,詳細闡述了最小二乘法的思想。通過計算最小均方差關於參數a、b的偏導數為零時的值。事實上,在很多情況下,最小二乘法都是線性回歸的代名詞。
遺憾的是,最小二乘法只適合與誤差較小的情況。試想一下這種情況,假使需要從一個噪音較大的數據集中提取模型(比方說只有20%的數據時符合模型的)時,最小二乘法就顯得力不從心了。例如下圖,肉眼可以很輕易地看出一條直線(模式),但算法卻找錯了。
RANSAC算法的輸入是一組觀測數據(往往含有較大的噪聲或無效點),一個用於解釋觀測數據的參數化模型以及一些可信的參數。RANSAC通過反復選擇數據中的一組隨機子集來達成目標。被選取的子集被假設為局內點,並用下述方法進行驗證: