Isodata算法(也稱為Iterative Self-Organizing Data Analysis Technique)是一種迭代方法,用於計算圖像的最佳閾值。其基本思想是從一個初始閾值開始,然後迭代地計算分割後的前景和背景的均值,直到閾值收斂。
以下是如何在Python中使用Isodata算法進行圖像閾值分割的範例:
def isodata_threshold(image):
"""
Compute the Isodata threshold for an image.
"""
# Initialize threshold
threshold = np.mean(image)
prev_threshold = 0
# Iterate until the threshold converges
while abs(threshold - prev_threshold) > 0.5:
# Split the image into two parts based on the threshold
below_thresh = image[image <= threshold]
above_thresh = image[image > threshold]
# Calculate the means of these parts
mean_below = np.mean(below_thresh)
mean_above = np.mean(above_thresh)
# Update the threshold
prev_threshold = threshold
threshold = (mean_below + mean_above) / 2
return threshold
# Compute the Isodata threshold
isodata_thresh = isodata_threshold(provided_img)
# Apply the threshold to the image
_, isodata_img = cv2.threshold(provided_img, isodata_thresh, 255, cv2.THRESH_BINARY)
# Display the original and Isodata thresholded images
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(provided_img, cmap='gray')
ax[0].set_title('Original Image')
ax[0].axis('off')
ax[1].imshow(isodata_img, cmap='gray')
ax[1].set_title('Isodata Thresholded Image')
ax[1].axis('off')
plt.tight_layout()
plt.show()
如上所示,左側是您提供的原始圖像,而右側是使用Isodata算法進行分割的結果。
Isodata算法通過迭代計算閾值,直到閾值收斂。從結果中,您可以看到此方法是如何區分圖像的前景和背景的。
Isodata算法通常比其他方法更穩健,因為它考慮了圖像的整體特性,並透過迭代來確定最佳閾值。根據實際應用,可能需要對算法進行微調以獲得最佳結果。