山脊分析或Ridler-Calvard方法是基於直方圖的一個迭代技術。這種方法的工作原理是:首先選擇一個初始閾值(通常是圖像的整體平均值),然後使用這個閾值將圖像分為兩部分,計算這兩部分的均值。新的閾值是這兩個均值的平均值。這一過程不斷迭代,直到閾值收斂。
以下是如何在Python中使用Ridler-Calvard方法進行圖像閾值分割的範例:
def ridler_calvard_threshold(image):
"""
Compute the Ridler-Calvard threshold for an image.
"""
# Initialize threshold
threshold = np.mean(image)
prev_threshold = 0
# Iterate until the threshold converges
while abs(threshold - prev_threshold) > 0.5:
# Split the image into two parts based on the threshold
below_thresh = image[image <= threshold]
above_thresh = image[image > threshold]
# Calculate the means of these parts
mean_below = np.mean(below_thresh)
mean_above = np.mean(above_thresh)
# Update the threshold
prev_threshold = threshold
threshold = (mean_below + mean_above) / 2
return threshold
# Compute the Ridler-Calvard threshold
ridler_calvard_thresh = ridler_calvard_threshold(provided_img)
# Apply the threshold to the image
_, ridler_calvard_img = cv2.threshold(provided_img, ridler_calvard_thresh, 255, cv2.THRESH_BINARY)
# Display the original and Ridler-Calvard thresholded images
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(provided_img, cmap='gray')
ax[0].set_title('Original Image')
ax[0].axis('off')
ax[1].imshow(ridler_calvard_img, cmap='gray')
ax[1].set_title('Ridler-Calvard Thresholded Image')
ax[1].axis('off')
plt.tight_layout()
plt.show()
如上所示,左側是您提供的原始圖像,而右側是使用Ridler-Calvard方法進行分割的結果。
Ridler-Calvard方法是通過迭代計算閾值,直到閾值收斂。這種方法與Isodata算法非常相似,並且結果通常也相似。從結果中,您可以看到此方法是如何區分圖像的前景和背景的。
Ridler-Calvard方法通常在具有清晰前景和背景的圖像上效果很好,且其計算過程相對簡單和快速。