close

 http://blog.csdn.net/ywywcy/article/details/1704585

  

#include "StdAfx.h"
#include <stdlib.h>
#include <malloc.h>

void beforethin(unsigned char *ip, unsigned char *jp, 
                unsigned long lx, unsigned long ly)
{
    unsigned long i,j;
    for(i=0; i<ly; i++)
    {
        for(j=0; j<lx; j++)
        {
            //這裡要視前景是白點還是黑點而定,可以改動
            //如果前景是白點,就是這樣;反之反過來
            if(ip[i*lx+j]>0)
                jp[i*lx+j]=1;
            else
                jp[i*lx+j]=0;
        }
    }
}

/////////////////////////////////////////////////////////////////////////
//Hilditch細化算法
//功能:對圖像進行細化
//參數:image:代表圖像的一維數組
//      lx:圖像寬度
//      ly:圖像高度
//      無返回值
void ThinnerHilditch(void *image, unsigned long lx, unsigned long ly)
{
    char *f, *g;
    char n[10];
    unsigned int counter;
    short k, shori, xx, nrn;
    unsigned long i, j;
    long kk, kk11, kk12, kk13, kk21, kk22, kk23, kk31, kk32, kk33, size;
    size = (long)lx * (long)ly;
    g = (char *)malloc(size);

    if(g == NULL)
    {
        printf("error in allocating memory!/n");
        return;
    }

    f = (char *)image;
    for(i=0; i<lx; i++)
    {
        for(j=0; j<ly; j++)
        {
            kk=i*ly+j;
            if(f[kk]!=0)
            {
                f[kk]=1;
                g[kk]=f[kk];
            }
        }
    }

    counter = 1;

    do
    {
        printf("%4d*",counter);
        counter++;
        shori = 0;

        for(i=0; i<lx; i++)
        {
            for(j=0; j<ly; j++)
            {
                kk = i*ly+j;
                if(f[kk]<0)
                    f[kk] = 0;
                g[kk]= f[kk];
            }
        }

        for(i=1; i<lx-1; i++)
        {
            for(j=1; j<ly-1; j++)
            {
                kk=i*ly+j;

                if(f[kk]!=1)
                    continue;

                kk11 = (i-1)*ly+j-1;
                kk12 = kk11 + 1;
                kk13 = kk12 + 1;
                kk21 = i*ly+j-1;
                kk22 = kk21 + 1;
                kk23 = kk22 + 1;
                kk31 = (i+1)*ly+j-1;
                kk32 = kk31 + 1;
                kk33 = kk32 + 1;

                if((g[kk12]&&g[kk21]&&g[kk23]&&g[kk32])!=0)
                    continue;

                nrn = g[kk11] + g[kk12] + g[kk13] + g[kk21] + g[kk23] + 
                    g[kk31] + g[kk32] + g[kk33];

                if(nrn <= 1)
                {
                    f[kk22] = 2;
                    continue;
                }

                n[4] = f[kk11];
                n[3] = f[kk12];
                n[2] = f[kk13];
                n[5] = f[kk21];
                n[1] = f[kk23];
                n[6] = f[kk31];
                n[7] = f[kk32];
                n[8] = f[kk33];
                n[9] = n[1];
                xx = 0;

                for(k=1; k<8; k=k+2)
                {
                    if((!n[k])&&(n[k+1]||n[k+2]))
                        xx++;
                }

                if(xx!=1)
                {
                    f[kk22] = 2;
                    continue;
                }

                if(f[kk12] == -1)
                {
                    f[kk12] = 0;
                    n[3] = 0;
                    xx = 0;

                    for(k=1; k<8; k=k+2)
                    {
                        if((!n[k])&&(n[k+1]||n[k+2]))
                            xx++;
                    }

                    if(xx != 1)
                    {
                        f[kk12] = -1;
                        continue;
                    }

                    f[kk12] = -1;
                    n[3] = -1;
                }

                if(f[kk21]!=-1)
                {
                    f[kk22] = -1;
                    shori = 1;
                    continue;
                }

                f[kk21] = 0;
                n[5] = 0;
                xx = 0;

                for(k=1; k<8; k=k+2)
                {
                    if((!n[k])&&(n[k+1]||n[k+2]))
                    {
                        xx++;
                    }
                }

                if(xx == 1)
                {
                    f[kk21] = -1;
                    f[kk22] = -1;
                    shori =1;
                }
                else
                    f[kk21] = -1;
            }
        }
    }while(shori);

    free(g);
}

 

/////////////////////////////////////////////////////////////////////////
//Pavlidis細化算法

//功能:對圖像進行細化
//參數:image:代表圖像的一維數組
//      lx:圖像寬度
//      ly:圖像高度
//      無返回值
void ThinnerPavlidis(void *image, unsigned long lx, unsigned long ly)
{
    char erase, n[8];
    char *f;
    unsigned char bdr1,bdr2,bdr4,bdr5;
    short c,k,b;
    unsigned long i,j;
    long kk,kk1,kk2,kk3;
    f = (char*)image;

    for(i=1; i<lx-1; i++)
    {
        for(j=1; j<ly-1; j++)
        {
            kk = i*ly + j;
            if(f[kk])
                f[kk] = 1;
        }
    }

    for(i=0, kk1=0, kk2=ly-1; i<lx; i++, kk1+=ly, kk2+=ly)
    {
        f[kk1]=0;
        f[kk2]=0;
    }

    for(j=0, kk=(lx-1)*ly; j<ly; j++,kk++)
    {
        f[j]=0;
        f[kk]=0;
    }

    c=5;
    erase =1;
    while(erase)
    {
        c++;
        for(i=1; i<lx-1; i++)
        {
            for(j=1; j<ly-1; j++)
            {
                kk=i*ly+j;
                if(f[kk]!=1)
                    continue;

                kk1 = kk-ly -1;
                kk2 = kk1 + 1;
                kk3 = kk2 + 1;
                n[3] = f[kk1];
                n[2] = f[kk2];
                n[1] = f[kk3];
                kk1 = kk - 1;
                kk3 = kk + 1;
                n[4] = f[kk1];
                n[0] = f[kk3];
                kk1 = kk + ly -1;
                kk2 = kk1 + 1;
                kk3 = kk2 + 1;
                n[5] = f[kk1];
                n[6] = f[kk2];
                n[7] = f[kk3];

                bdr1 =0;
                for(k=0; k<8; k++)
                {
                    if(n[k]>=1)
                        bdr1|=0x80>>k;
                }

                if((bdr1&0252)== 0252)
                    continue;
                f[kk] = 2;
                b=0;

                for(k=0; k<=7; k++)
                {
                    b+=bdr1&(0x80>>k);
                }

                if(b<=1)
                    f[kk]=3;

                if((bdr1&0160)!=0&&(bdr1&07)!=0&&(bdr1&0210)==0)
                    f[kk]=3;
                else if((bdr1&&0301)!=0&&(bdr1&034)!=0&&(bdr1&042)==0)
                    f[kk]=3;
                else if((bdr1&0202)==0 && (bdr1&01)!=0)
                    f[kk]=3;
                else if((bdr1&0240)==0 && (bdr1&0100)!=0)
                    f[kk]=3;
                else if((bdr1&050)==0 && (bdr1&020)!=0)
                    f[kk]=3;
                else if((bdr1&012)==0 && (bdr1&04)!=0)
                    f[kk]=3;
            }
        }

        for(i=1; i<lx-1; i++)
        {
            for(j=1; j<ly-1; j++)
            {
                kk = i*ly + j;
                if(!f[kk])
                    continue;

                kk1 = kk - ly -1;
                kk2 = kk1 + 1;
                kk3 = kk2 + 1;
                n[3] = f[kk1];
                n[2] = f[kk2];
                n[1] = f[kk3];
                kk1 = kk - 1;
                kk2 = kk + 1;
                n[4] = f[kk1];
                n[0] = f[kk3];
                kk1 = kk + ly -1;
                kk2 = kk1 + 1;
                kk3 = kk2 + 1;
                n[5] = f[kk1];
                n[6] = f[kk2];
                n[7] = f[kk3];
                bdr1 = bdr2 =0;

                for(k=0; k<=7; k++)
                {
                    if(n[k]>=1)
                        bdr1|=0x80>>k;
                    if(n[k]>=2)
                        bdr2|=0x80>>k;
                }

                if(bdr1==bdr2)
                {
                    f[kk] = 4;
                    continue;
                }

                if(f[kk]!=2)
                    continue;

                if((bdr2&0200)!=0 && (bdr1&010)==0 &&
                    ((bdr1&0100)!=0 &&(bdr1&001)!=0 ||
                    ((bdr1&0100)!=0 ||(bdr1 & 001)!=0) &&
                    (bdr1&060)!=0 &&(bdr1&06)!=0))
                {
                    f[kk] = 4;
                }

                else if((bdr2&040)!=0 && (bdr1&02)==0 &&
                    ((bdr1&020)!=0 && (bdr1&0100)!=0 ||
                    ((bdr1&020)!=0 || (bdr1&0100)!=0) &&
                    (bdr1&014)!=0 && (bdr1&0201)!=0))
                {
                    f[kk] = 4;
                }

                else if((bdr2&010)!=0 && (bdr1&0200)==0 &&
                    ((bdr1&04)!=0 && (bdr1&020)!=0 ||
                    ((bdr1&04)!=0 || (bdr1&020)!=0) &&
                    (bdr1&03)!=0 && (bdr1&0140)!=0))
                {
                    f[kk] = 4;
                }

                else if((bdr2&02)!=0 && (bdr1&040)==0 &&
                    ((bdr1&01)!=0 && (bdr1&04)!=0 ||
                    ((bdr1&01)!=0 || (bdr1&04)!=0) &&
                    (bdr1&0300)!=0 && (bdr1&030)!=0))
                {
                    f[kk] = 4;
                }
            }
        }

        for(i=1; i<lx-1; i++)
        {
            for(j=1; j<ly-1; j++)
            {
                kk = i*ly + j;
                if(f[kk]!=2)
                    continue;
                kk1 = kk - ly -1;
                kk2 = kk1 + 1;
                kk3 = kk2 + 1;
                n[3] = f[kk1];
                n[2] = f[kk2];
                n[1] = f[kk3];
                kk1 = kk - 1;
                kk2 = kk + 1;
                n[4] = f[kk1];
                n[0] = f[kk3];
                kk1 = kk + ly -1;
                kk2 = kk1 + 1;
                kk3 = kk2 + 1;
                n[5] = f[kk1];
                n[6] = f[kk2];
                n[7] = f[kk3];
                bdr4 = bdr5 =0;
                for(k=0; k<=7; k++)
                {
                    if(n[k]>=4)
                        bdr4|=0x80>>k;
                    if(n[k]>=5)
                        bdr5|=0x80>>k;
                }
                if((bdr4&010) == 0)
                {
                    f[kk] = 5;
                    continue;
                }
                if((bdr4&040) == 0 && bdr5 ==0)
                {
                    f[kk] = 5;
                    continue;
                }
                if(f[kk]==3||f[kk]==4)
                    f[kk] = c;
            }
        }

        erase = 0;
        for(i=1; i<lx-1; i++)
        {
            for(j=1; j<ly-1; j++)
            {
                kk = i*ly +j;
                if(f[kk]==2||f[kk] == 5)
                {
                    erase = 1;
                    f[kk] = 0;
                }
            }
        }
    }
}

 

/////////////////////////////////////////////////////////////////////////
//Rosenfeld細化算法

//功能:對圖像進行細化
//參數:image:代表圖像的一維數組
//      lx:圖像寬度
//      ly:圖像高度
//      無返回值
void ThinnerRosenfeld(void *image, unsigned long lx, unsigned long ly)
{
    char *f, *g;
    char n[10];
    char a[5] = {0, -1, 1, 0, 0};
    char b[5] = {0, 0, 0, 1, -1};
    char nrnd, cond, n48, n26, n24, n46, n68, n82, n123, n345, n567, n781;
    short k, shori;
    unsigned long i, j;
    long ii, jj, kk, kk1, kk2, kk3, size;
    size = (long)lx * (long)ly;

    g = (char *)malloc(size);
    if(g==NULL)
    {
        printf("error in alocating mmeory!/n");
        return;
    }

    f = (char *)image;
    for(kk=0l; kk<size; kk++)
    {
        g[kk] = f[kk];
    }

    do
    {
        shori = 0;
        for(k=1; k<=4; k++)
        {
            for(i=1; i<lx-1; i++)
            {
                ii = i + a[k];

                for(j=1; j<ly-1; j++)
                {
                    kk = i*ly + j;

                    if(!f[kk])
                        continue;

                    jj = j + b[k];
                    kk1 = ii*ly + jj;

                    if(f[kk1])
                        continue;

                    kk1 = kk - ly -1;
                    kk2 = kk1 + 1;
                    kk3 = kk2 + 1;
                    n[3] = f[kk1];
                    n[2] = f[kk2];
                    n[1] = f[kk3];
                    kk1 = kk - 1;
                    kk3 = kk + 1;
                    n[4] = f[kk1];
                    n[8] = f[kk3];
                    kk1 = kk + ly - 1;
                    kk2 = kk1 + 1;
                    kk3 = kk2 + 1;
                    n[5] = f[kk1];
                    n[6] = f[kk2];
                    n[7] = f[kk3];

                    nrnd = n[1] + n[2] + n[3] + n[4]
                        +n[5] + n[6] + n[7] + n[8];
                    if(nrnd<=1)
                        continue;

                    cond = 0;
                    n48 = n[4] + n[8];
                    n26 = n[2] + n[6];
                    n24 = n[2] + n[4];
                    n46 = n[4] + n[6];
                    n68 = n[6] + n[8];
                    n82 = n[8] + n[2];
                    n123 = n[1] + n[2] + n[3];
                    n345 = n[3] + n[4] + n[5];
                    n567 = n[5] + n[6] + n[7];
                    n781 = n[7] + n[8] + n[1];

                    if(n[2]==1 && n48==0 && n567>0)
                    {
                        if(!cond)
                            continue;
                        g[kk] = 0;
                        shori = 1;
                        continue;
                    }

                    if(n[6]==1 && n48==0 && n123>0)
                    {
                        if(!cond)
                            continue;
                        g[kk] = 0;
                        shori = 1;
                        continue;
                    }

                    if(n[8]==1 && n26==0 && n345>0)
                    {
                        if(!cond)
                            continue;
                        g[kk] = 0;
                        shori = 1;
                        continue;
                    }

                    if(n[4]==1 && n26==0 && n781>0)
                    {
                        if(!cond)
                            continue;
                        g[kk] = 0;
                        shori = 1;
                        continue;
                    }

                    if(n[5]==1 && n46==0)
                    {
                        if(!cond)
                            continue;
                        g[kk] = 0;
                        shori = 1;
                        continue;
                    }

                    if(n[7]==1 && n68==0)
                    {
                        if(!cond)
                            continue;
                        g[kk] = 0;
                        shori = 1;
                        continue;
                    }

                    if(n[1]==1 && n82==0)
                    {
                        if(!cond)
                            continue;
                        g[kk] = 0;
                        shori = 1;
                        continue;
                    }

                    if(n[3]==1 && n24==0)
                    {
                        if(!cond)
                            continue;
                        g[kk] = 0;
                        shori = 1;
                        continue;
                    }

                    cond = 1;
                    if(!cond)
                        continue;
                    g[kk] = 0;
                    shori = 1;
                }
            }

            for(i=0; i<lx; i++)
            {
                for(j=0; j<ly; j++)
                {
                    kk = i*ly + j;
                    f[kk] = g[kk];
                }
            }
        }
    }while(shori);

    free(g);
}                    

 

/////////////////////////////////////////////////////////////////////////
//基於索引表的細化細化算法

//功能:對圖像進行細化
//參數:lpDIBBits:代表圖像的一維數組
//      lWidth:圖像高度
//      lHeight:圖像寬度
//      無返回值
BOOL WINAPI ThiningDIBSkeleton (LPSTR lpDIBBits, LONG lWidth, LONG lHeight)
{    
    //循環變量
    long i;
    long j;
    long lLength;
    
    unsigned char deletemark[256] = {
        0,0,0,0,0,0,0,1,    0,0,1,1,0,0,1,1,
        0,0,0,0,0,0,0,0,    0,0,1,1,1,0,1,1,
        0,0,0,0,0,0,0,0,    1,0,0,0,1,0,1,1,
        0,0,0,0,0,0,0,0,    1,0,1,1,1,0,1,1,
        0,0,0,0,0,0,0,0,    0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,    0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,    1,0,0,0,1,0,1,1,
        1,0,0,0,0,0,0,0,    1,0,1,1,1,0,1,1,
        0,0,1,1,0,0,1,1,    0,0,0,1,0,0,1,1,
        0,0,0,0,0,0,0,0,    0,0,0,1,0,0,1,1,
        1,1,0,1,0,0,0,1,    0,0,0,0,0,0,0,0,
        1,1,0,1,0,0,0,1,    1,1,0,0,1,0,0,0,
        0,1,1,1,0,0,1,1,    0,0,0,1,0,0,1,1,
        0,0,0,0,0,0,0,0,    0,0,0,0,0,1,1,1,
        1,1,1,1,0,0,1,1,    1,1,0,0,1,1,0,0,
        1,1,1,1,0,0,1,1,    1,1,0,0,1,1,0,0
    };//索引表

    unsigned char p0, p1, p2, p3, p4, p5, p6, p7;
    unsigned char *pmid, *pmidtemp;
    unsigned char sum;
    int changed;
    bool bStart = true;
    lLength = lWidth * lHeight;
    unsigned char *pTemp = (unsigned char *)malloc(sizeof(unsigned char) * lWidth * lHeight);
    
    //    P0 P1 P2
    //    P7    P3
    //    P6 P5 P4

    while(bStart)
    {
        bStart = false;
        changed = 0;

        //首先求邊緣點(並行)
        pmid = (unsigned char *)lpDIBBits + lWidth + 1;
        memset(pTemp, (BYTE) 0, lLength);
        pmidtemp = (unsigned char *)pTemp + lWidth + 1;
        for(i = 1; i < lHeight -1; i++)
        {
            for(j = 1; j < lWidth - 1; j++)
            {
                if( *pmid == 0)
                {
                    pmid++;
                    pmidtemp++;
                    continue;
                }

                p3 = *(pmid + 1);
                p2 = *(pmid + 1 - lWidth);
                p1 = *(pmid - lWidth);
                p0 = *(pmid - lWidth -1);
                p7 = *(pmid - 1);
                p6 = *(pmid + lWidth - 1);
                p5 = *(pmid + lWidth);
                p4 = *(pmid + lWidth + 1);
                
                sum = p0 & p1 & p2 & p3 & p4 & p5 & p6 & p7;
                if(sum == 0)
                {
                    *pmidtemp = 1;
                }

                pmid++;
                pmidtemp++;
            }
            pmid++;
            pmid++;
            pmidtemp++;
            pmidtemp++;
        }
        
        //現在開始串行刪除
        pmid = (unsigned char *)lpDIBBits + lWidth + 1;
        pmidtemp = (unsigned char *)pTemp + lWidth + 1;

        for(i = 1; i < lHeight -1; i++)
        {
            for(j = 1; j < lWidth - 1; j++)
            {
                if( *pmidtemp == 0)
                {
                    pmid++;
                    pmidtemp++;
                    continue;
                }

                p3 = *(pmid + 1);
                p2 = *(pmid + 1 - lWidth);
                p1 = *(pmid - lWidth);
                p0 = *(pmid - lWidth -1);
                p7 = *(pmid - 1);
                p6 = *(pmid + lWidth - 1);
                p5 = *(pmid + lWidth);
                p4 = *(pmid + lWidth + 1);
                
                p1 *= 2;
                p2 *= 4;
                p3 *= 8;
                p4 *= 16;
                p5 *= 32;
                p6 *= 64;
                p7 *= 128;

                sum = p0 | p1 | p2 | p3 | p4 | p5 | p6 | p7;
                if(deletemark[sum] == 1)
                {
                    *pmid = 0;
                    bStart = true;
                }

                pmid++;
                pmidtemp++;
            }

            pmid++;
            pmid++;
            pmidtemp++;
            pmidtemp++;
        }
    }

    return true;
}

 

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 Rocky 的頭像
    Rocky

    Rocky的部落格

    Rocky 發表在 痞客邦 留言(0) 人氣()